Se AB è il segmento dato, si conduca la per perpendicolare ad AB nellestremo B e si prenda su di esso il segmento BO, metà di AB, indi col centro in O si descriva la circonferenza di raggio OB, che risulterà tangente in B alla retta AB. Si unisca A con O e si chiamino C e D le intersezioni della retta AO con la circonferenza; si porti infine su AB il segmento AE congruente ad AC. Proveremo che AE è il segmento cercato, cioè che sussiste la proporzione: AB : AE = AE : EB Infatti per il teorema della secante e della tangente (se da un punto si conducono ad una circonferenza una secante e una tangente, il segmento determinato dalla circonferenza sulla tangente è medio proporzionale fra i segmenti determinati sulla secante e aventi un estremo in quel punto) si ha: AD : AB = AB : AC Da cui scomponendo si ottiene:
Esiste uno speciale rettangolo le cui proporzioni corrispondono alla sezione aurea. Il suo nome è rettangolo aureo. Per costruire il rettangolo aureo si disegni un quadrato di lato a i cui vertici chiameremo, a partire dal vertice in alto a sinistra e procedendo in senso orario, AEFD. Quindi dividere il segmento AE in due chiamando il punto medio A'. Utilizzando il compasso e puntando in A' disegnare un arco che da F intersechi il prolungamento del segmento AE in B. Con una squadra disegnare il segmento BC perpendicolare ad AB. Il rettangolo ABCD è un rettangolo aureo nel quale Ab è diviso dal punto E esattamente nella sezione aurea: AE:AB=EB:AE
TRIANGOLO CON ANGOLI DI MISURA: 72°, 72°, 36°. Dato un triangolo isoscele i cui angoli alla base misurano 72° ciascuno, e langolo al vertice misura 36°, la bisettrice di un angolo alla base divide il lato obliquo opposto nel punto dintersezione in due segmenti in modo tale da creare una sezione aurea. Infatti il triangolo ABC è simile al triangolo BCD. E da questo risulta che: AC:BC=BD:DC e dunque:
TRIANGOLO CON ANGOLI DI MISURA: 36°, 36°, 108°. Dato un triangolo isoscele i cui angoli alla base misurano 36° ciascuno, e langolo al vertice misura 108°, il lato obliquo e la differenza tra la base e il lato obliquo danno vita a una sezione aurea. Infatti il triangolo CDE è simile al triangolo ABD della figura precedente.
PENTAGONO E TRIANGOLI IN ESSO CONTENUTI Allinterno di un pentagono, ogni lato forma con due diagonali (il segmento che unisce due punti non adiacenti) un triangolo dagli angoli con misura 72°, 72°, 36°, con le proprietà spiegate in precedenza. Ogni lato forma, con il punto dincontro di due diagonali consecutive, un triangolo dagli angoli 36°, 36°, 108°, con le proprietà descritte in precedenza. Cioè il lato del pentagono regolare è la sezione aurea di una sua diagonale e il punto d' intersezione tra due diagonali divide ciascuna di esse in due segmenti che stanno nel rapporto aureo.
SPIRALE AUREA
|